
Generalisation of the Danilov-Karzanov-Koshevoy
Construction for Peak-Pit Condorcet Domains

ARKADII SLINKO
Danilov, Karzanov and Koshevoy (2012) geometrically introduced an interesting operation of composition on

Condorcet domains and using it they disproved a long-standing problem of Fishburn about the maximal size of

connected Condorcet domains. We give an algebraic definition of this operation and investigate its properties.

We give a precise formula for the cardinality of composition of two Condorcet domains and improve the

Danilov, Karzanov and Koshevoy result showing that Fishburn’s alternating scheme does not always produce

a largest connected Condorcet domain.

1 INTRODUCTION
The famous Condorcet Paradox shows that if voters’ preferences are unrestricted, the majority

voting can lead to intransitive collective preference in which case the Condorcet Majority Rule

[Condorcet, 1785], despite all its numerous advantages, is unable to determine the best alternative,

i.e., it is not always decisive. Domain restrictions is, therefore, an important topic in economics and

computer science alike [Elkind, 2018]. In particular, for artificial societies of autonomous software

agents there is no problem of individual freedom and, hence, for the sake of having transitive

collective decisions the designers can restrict choices of those artificial agents in order to make the

majority rule work.

Condorcet domains are sets of linear orders with the property that, whenever the preferences of

all voters belong to this set, the majority relation of any profile with an odd number of voters is

transitive. Maximal Condorcet domains historically have attracted a special attention since they

represent a compromise which allows a society to always have transitive collective preferences and,

under this constraint, provide voters with as much individual freedom as possible. The question:

“How large a Condorcet domain can be?” has attracted even more attention (see the survey of

Monjardet [2009] for a fascinating account of historical developments). Kim et al. [1992] identified

this problem as a major unsolved problem in the mathematical social sciences. Fishburn [1996]

introduced the function

f (n) = max{|D| : D is a Condorcet domain on the set of n alternatives.}

and put this problem in the mathematical perspective.

Abello [1991] and Fishburn [1996, 2002] managed to construct some “large” Condorcet domains

based on different ideas. Fishburn, in particular, taking a clue from Monjardet example (sent to

him in private communication), came up with the so-called alternating scheme domains (that will

be defined later in the text), later called Fishburn’s domains [Danilov et al., 2012]. This scheme

produced Condorcet domains with some nice properties, which, in particular, are connected and

have maximal width (see the definitions of these concepts later in this paper). Fishburn [1996]

conjectured (Conjecture 2) that among Condorcet domains that do not satisfy the so-called never-

middle condition (these in [Danilov et al., 2012] were later called peak-pit domains), the alternating

scheme provides domains of maximum cardinality. Galambos and Reiner [2008] formulated another

similar hypothesis (Conjecture 1) which later appeared to be equivalent to Fishburn’s one [Danilov

et al., 2012]. Monjardet [2006] introduced the function

д(n) = max{|D| : D is a peak-pit Condorcet domain on the set of n alternatives}

in terms of which Fishburn’s hypothesis becomes д(n) = |Fn |, where Fn is the nth Fishburn domain.

Monjardet [2009] also emphasised Fishburn’s hypothesis.
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It is known that д(n) = f (n) for n ≤ 7 [Fishburn, 1996, Galambos and Reiner, 2008] and it

is believed that д(16) < f (16) [Monjardet, 2009]. This is because [Fishburn, 1996] showed that

f (16) > |F16 |. Thus, if Fishburn’s hypothesis were true we would get f (n) > д(n) for large n.
However, this hypothesis is not true.

Danilov et al. [2012] introduced the class of tiling domains which are peak-pit domains of maximal

width and defined an operation on tiling domains that allowed them to show that д(42) > |F42 |. This

operation was somewhat informally defined which made investigation of it and application of it in

other situations difficult. In the present article we give an algebraic definition and a generalisation

of the Danilov-Karzanov-Koshevoy construction and investigate its properties. In our interpretation

it involves two peak-pit Condorcet domainsD1 andD2 on sets of n andm alternatives, respectively,

and two linear orders u ∈ D1 and v ∈ D2; the result is denoted as (D1 ⊗ D2)(u,v). It is again a

peak-pit Condorcet domain onn+m alternatives which exact cardinality we can calculate. Using this

formula we can slightly refine the argument from [Danilov et al., 2012] to show that д(40) > |F40 |.

2 PRELIMINARIES
Let A be a finite set and L(A) be the set of all (strict) linear orders on A. Any subset D ⊆ L(A) will
be called a domain. Any sequence P = (v1, . . . ,vn) of linear orders from D will be called a profile
over D. A linear order a1 > a2 > · · · > an on A, will be denoted by a string a1a2 . . . an . Let us also
introduce notation for reversing orders: if x = a1a2 . . . an , then x̄ = anan−1 . . . a1. If linear order vi
ranks a higher than b, we denote this as a ≻i b.

Definition 1. The majority relation ⪰P of a profile P is defined as

a ⪰P b ⇐⇒ |{i | a ≻i b}| ≥ |{i | b ≻i a}|.

For an odd number of linear orders in the profile P this relation is a tournament, i.e., complete and
asymmetric binary relation. In this case we denote it ≻P .

Now we can define the main object of this investigation.

Definition 2. A domain D ⊆ L(A) over a set of alternatives A is a Condorcet domain if the
majority relation of any profile P over D with odd number of voters is transitive. A Condorcet domain
D is maximal if for any Condorcet domain D ′ ⊆ L(A) the inclusion D ⊆ D ′ implies D = D ′.

There is a number of alternative definitions of Condorcet domains, see e.g., Monjardet [2009],

Puppe and Slinko [2019].

Up to an isomorphism, there is only one maximal Condorcet domain on the set {a,b}, namely

CD2 = {ab,ba} and there are only three maximal Condorcet domains on the set of alternatives

{a,b, c}, namely,

CD3,t = {abc,acb, cab, cba}, CD3,m = {abc,bca,acb, cba}, CD3,b = {abc,bac,bca, cba}.

The first domain contains all the linear orders on a,b, c where c is never ranked first, second

contains all the linear orders on a,b, c where a is never ranked second and the third contains all

the linear orders on a,b, c where b is never ranked last. Following Monjardet, we denote these

conditions as cN {a,b,c }1, aN {a,b,c }2 and bN {a,b,c }3, respectively. We note that these are the only

conditions of type xN {a,b,c }i with x ∈ {a,b, c} and i ∈ {1, 2, 3} that these domains satisfy.

A domain that for any triple a,b, c ∈ A satisfies a condition xN {a,b,c }1 with x ∈ {a,b, c} is called
never-top domain, a domain that for any triple a,b, c ∈ A satisfies a condition xN {a,b,c }2 with

x ∈ {a,b, c} is called never-middle domain, and a domain that for any triple a,b, c ∈ A satisfies a

condition xN {a,b,c }3 with x ∈ {a,b, c} is called never-bottom domain. A domain that for any triple

satisfies either never-top or never-bottom condition is called peak-pit domain [Danilov et al., 2012].

Both never-top and never-bottom conditions will be called peak-pit conditions.
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We note that Danilov et al. [2012], who consider linear orders over A = {1, 2, . . . ,n}, restrict
the class of peak-pit domains to domains that contain two completely reversed orders (up to an

isomorphism they can be taken as 12 . . .n and 12 . . .n = n n − 1 . . . 1) and prove that under this

restriction all of them can be embedded into tiling domains (Theorem 2 of [Danilov et al., 2012]).

We also note that never-bottom domains are also known as Arrow’s single-peaked domains and

maximal domains among them have all cardinality 2
n−1

[Slinko, 2019].

Given a set of alternatives A, we say that

N = {xN {a,b,c }i | {a,b, c} ⊆ A, x ∈ {a,b, c} and i ∈ {1, 2, 3}} (1)

is a complete set of never conditions if it contains at least one never condition for every triple a,b, c
of distinct elements of A. If the set of linear orders that satisfy N is non-empty, we say that N is

consistent.

Proposition 1. A domain of linear orders D ⊆ L(A) is a Condorcet domain if and only if it is
non-empty and satisfies a complete set of never conditions.

Proof. This is well-known characterisation noticed by many researchers. See, for example,

Theorem 1(d) in [Puppe and Slinko, 2019] and references there. □

This proposition, in particular, means that the collection D(N) of all linear orders that satisfy a

certain complete set of never conditionsN , if non-empty, is a Condorcet domain. Let us also denote

by N(D) the set of all never conditions that are satisfied by all linear orders from a domain D.

Let ψ : A → A′
be a bijection between two sets of alternatives. It can then be extended to a

mapping ψ : L(A) → L(A′) in two ways: by mapping linear order u = a1a2 . . . am onto ψ (u) =

ψ (a1)ψ (a2) . . .ψ (am)
1
or toψ (u) = ψ (am)ψ (am−1) . . .ψ (a1).

Definition 3. LetA andA′ be two sets of alternatives (not necessarily distinct) of equal cardinality.
We say that two domains,D ⊆ L(A) andD ′ ⊆ L(A′) are isomorphic if there is a bijectionψ : A → A′

such that D ′ = {ψ (d) | d ∈ D} and flip-isomorphic if D ′ = {ψ (d) | d ∈ D}.

Example 1. The single-peaked and single-dipped maximal Condorcet domains on {a,b, c} are
CD3,b = {abc,bac,bca, cba} and CD3,t = {abc,acb,bca,bac}, respectively. They are not isomorphic
but flip-isomorphic under the identity mapping of {a,b, c} onto itself.

Definition 4 ([Puppe, 2018]). A Condorcet domain D is said to have maximal width if it contains
two completely reversed orders, i.e., together with some linear order u it also contains ū.

Up to an isomorphism, for any Condorcet domain D of maximal width we may assume that

A = {1, 2, . . . ,n} and it contains linear orders e = 12 . . .n and ē = n . . . 21.

The universal domain L(A) is naturally endowed with the following betweenness structure (as

defined by Kemeny [1959]). An order v is between orders u andw if v ⊇ u ∩w , i.e., v agrees with

all binary comparisons in which u andw agree (see also [Kemeny and Snell, 1960]).The set of all

orders that are between u andw is called the interval spanned by u andw and is denoted by [u,w].

The domain L(A) endowed with this betweenness relation is referred to as the permutahedron
[Monjardet, 2009].

Given a domain of preferences D, for any u,w ∈ D we define the induced interval as [u,w]D =

[u,w] ∩ D. Puppe and Slinko [2019] defined a graph GD associated with this domain. The set of

linear orders from D are the set of vertices VD of GD , and for two orders u,w ∈ D we draw an

edge between them if there is no other vertex between them, i.e., [u,w]D = {u,w}. The set of edges

1
We use the same notation for both mappings since there can be no confusion.
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is denoted ED so the graph is GD = (VD ,ED). As established in [Puppe and Slinko, 2019], for any

Condorcet domain D the graph GD is a median graph [Mulder, 1978] and any median graph can

be obtained in this way.

A domain D is called connected if its graph GD is a connected subgraph of the permutahedron

[Puppe and Slinko, 2019]; we note that domains CD3,t and CD3,b are connected but CD3,m is not.

Danilov et al. [2012] called a domain of maximal width semi-connected if the two completely reversed

orders can be connected by a path of vertices that is also a path in the permutahedron. They proved

that a maximal Condorcet domain of maximal width is semi-connected if and only if it is a peak-pit

domain. Puppe [2017] showed that for a maximal Condorcet domain semi-connectedness implies

direct connectedness (Proposition A2) which means that any two linear orders in the domain are

connected by a shortest possible (geodesic) path.

Finally, we give two more definitions that express two properties of Condorcet domains.

Definition 5. We call a Condorcet domain D ample if for any pair of alternatives a,b ∈ A the
restriction D{a,b } of this domain to {a,b} has two distinct orders, that is, D{a,b } = {ab,ba}.

Definition 6 ([Slinko, 2019]). A Condorcet domain D is called copious if for any triple of
alternatives a,b, c ∈ A the restriction D{a,b,c } of this domain to this triple has four distinct orders,
that is, |D{a,b,c } | = 4.

Of course, any copious Condorcet domain is ample. We note that, if a domain D is copious, then

it satisfies a unique set of never conditions (1).

Definition 7. A complete set of never-conditions (1) is said to satisfy the alternating scheme, if
for all 1 ≤ i < j < k ≤ n either
(1) jN {i, j,k }3, if j is even, and jN {i, j,k }1, if j is odd, or
(2) jN {i, j,k }1, if j is even, and jN {i, j,k }3, if j is odd.

Following Galambos and Reiner [2008] we denote these domains as Fn and Fn and call Fishburn’s

domains [Danilov et al., 2012]. The second domain is flip-isomorphic to the first so we consider

only the first one.

In particular, F2 = {12, 21}, F3 = {123, 213, 231, 321} and

F4 = {1234, 1243, 2134, 2143, 2413, 2431, 4213, 4231, 4321}.

[Galambos and Reiner, 2008] give the exact formula for the cardinality of Fn :

|Fn | = (n + 3)2n−3 −

{
(n − 3

2
)
(n−2

n
2
−1

)
for even n

(n−1

2
)
(n−1

n−1

2

)
for odd n

(2)

3 MAIN RESULTS
Let us start with an observation.

Proposition 2. Let D be a semi-connected Condorcet domain of maximal width on the set of
alternatives A. Then:

(i) For any a ∈ A its restriction D ′ on A′ = A − {a} is also a semi-connected domain of maximal
width.

(ii) D is copious peak-pit domain.

Proof. (i) Ifw and w̄ are two completely reversed linear orders in D, then after removal of a,
their images will still be completely reversed.
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Let u,v be two vertices in GD which are neighbouring vertices in the permutahedron. Then v
differs from u by a swap of neighbouring alternatives. Let u ′,v ′

be their images under the natural

mapping of D onto D ′
. If one of these swapped alternatives was a, then u ′ = v ′

. If not, u ′,v ′
will

still differ by a swap of neighbouring alternatives. Hence D ′
is semi-connected.

(ii) Let a,b, c ∈ A and let D ′′
be restriction of D onto {a,b, c}. Since D is of maximal width,

the same can be said about D ′′
and without loss of generality we may assume that D ′′

contains

abc and cba. By (i) D ′′
is semi-connected and hence there will be two intermediate orders in D ′′

connecting abc and cba. These would be either acb and cab or bac and bca. Thus, D ′′
has four

linear orders, and, hence, D is copious domain satisfying bN {a,b,c }1 and bN {a,b,c }3, respectively.

Hence it is a peak-pit domain. □

3.1 Danilov-Karzanov-Koshevoy construction and its generalisation
Let us now start describing the Danilov-Karzanov-Koshevoy construction [Danilov et al., 2012].

In fact, this will be a generalisation of their construction since in our construction two arbitrary

linear orders are involved.

Definition 8. We will call a linear order w = c1 . . . cn+m a shuffle of u = a1 . . . am and v =
b1 . . .bn , if:

(1) for every k = 1, . . . ,n the initial segment c1 . . . ck ofw is written for some particular s ≤ k with
all of the {a1, . . . ,as } and all of the {b1, . . . ,bk−s } (in particular, c1 = a1 or c1 = b1);

(2) If the initial segment c1 . . . ck of w is written with {a1, . . . ,as } and {b1, . . . ,bk−s } for some
s ≤ k , then ck+1 is either as+1 or bk−s+1.

Given two linear orders u and v , we define a domain u ⊕ v as the set of all shuffles of u and v . It
is clear from definition that u ⊕ v = v ⊕ u. The cardinality of this domain is |u ⊕ v | =

(n+m
m

)
.

Let D1 and D2 be two Condorcet domains on disjoint sets of alternatives A and B, respectively.
We define a concatenation of these domains as the domain

D1 ⊙ D2 = {xy | x ∈ D1 and y ∈ D2}

onA∪B. It is immediately clear thatD1 ⊙D2 is also a Condorcet domain of cardinality |D1 ⊙D2 | =

|D1 | |D2 |. We have only to check that one of the never-conditions is satisfied for triples {a1,a2,b}
where a1,a2 ∈ A and b ∈ B (for triples {a,b1,b2} the argument will be similar). The restriction

(D1 ⊙D2)|{a1,a2,b } will contain at most two linear orders a1a2b and a2a1b, which is consistent both

with never-top and never-bottom conditions.

Theorem 1. Let D1 and D2 be two Condorcet domains on disjoint set of alternatives A and B. Let
u ∈ D1 and v ∈ D2 be arbitrary linear orders. Then

(D1 ⊗ D2)(u,v) := (D1 ⊙ D2) ∪ (u ⊕ v)

is a Condorcet domain. Moreover, if D1 and D2 are peak-pit domains, so is (D1 ⊗ D2)(u,v).

Proof. Let us fix u and v in this construction and denote (D1 ⊗ D2)(u,v) as simply D1 ⊗ D2. If

a,b, c ∈ A, then (D1 ⊗ D2){a,b,c } = (D1){a,b,c } , i.e., the restriction of D1 ⊗ D2 onto {a,b, c} is the
same as the restriction of D1 onto {a,b, c}. Hence D1 ⊗ D2 satisfies the same never condition for

{a,b, c} as D1. For x ,y, z ∈ B the same thing happens.

Suppose now a,b ∈ A and x ∈ B. Then (D1 ⊙ D2){a,b,x } ⊆ {abx ,bax}. Let also u {a,b } = {ab}.
Then (u ⊕ v){a,b,x } = {abx ,axb,xab}, hence

(D1 ⊗ D2){a,b,x } ⊆ {abx ,bax ,axb,xab}, (3)
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thus D1 ⊗ D2 satisfies aN {a,b,x }3. For a ∈ A and x ,y ∈ B we have (D1 ⊙ D2){a,x,y } ⊆ {axy,ayx}.
Let also v {x,y } = {xy}. Then (u ⊕ v){a,x,y } = {axy,xay,xya}, hence

(D1 ⊗ D2){a,x,y } ⊆ {axy,ayx ,xay,xya}, (4)

thus D1 ⊗ D2 satisfies yN {a,x,y }1. □

Note: The inequalities (3) and (4) become equalities if for any i ∈ {1, 2} and any a,b ∈ Di we

have (Di )|{a,b } = {ab,ba}, i.e., if D1 and D2 are ample.

Proposition 3. If |A| =m and |B | = n, then for any u ∈ D1 and v ∈ D2

|(D1 ⊗ D2)(u,v)| = |D1 | |D2 | +

(
n +m

m

)
− 1. (5)

Proof. We have |D1 ⊗D2 | = |D1 | |D2 | and |u ⊕v | =
(n+m
m

)
. These two sets have only one linear

order in common which is uv . This proves (5). □

Proposition 4. Let D1 and D2 be of maximal width with u, ū ∈ D1 and v, v̄ ∈ D2. Then
(D1 ⊗D2)(u,v) is also of maximal width. IfD1 andD2 are semi-connected, then so is (D1 ⊗D2)(u,v).

Proof. SinceD1 andD2 are of maximal width, we have ū ∈ D1 and v̄ ∈ D2. Hence ūv̄ ∈ D1⊙D2.

We also have vu ∈ u ⊕v , and vu = ūv̄ , hence (D1 ⊗ D2)(u,v) has maximal width. To prove the last

statement we note that ūv̄ can be connected to uv (which belongs both to D1 ⊗ D2 and to u ⊕ v)
by a geodesic path and uv in turn can be connected to vu by a geodesic path within u ⊕ v . □

If both D1 and D2 have maximal width, it is not true, however, that (D1 ⊗ D2)(u,v) will have
maximal width for any u ∈ D1 and v ∈ D2. Let us take, for example, D1 = {x = ab, x̄ = ba}
and D2 = {u = cde,v = dec,w = dce, ū = edc}. Then (D1 ⊗ D2)(x ,u) has maximal width while

(D1 ⊗ D2)(x ,v) does not since v̄ < D2. In particular,

(D1 ⊗ D2)(x ,u) ≇ (D1 ⊗ D2)(x ,v).

This indicates that the construction of the tensor product may be useful in description of Condorcet

domains which do not satisfy the requirement of maximal width.

Proposition 5. Let D1 and D2 be two Condorcet domains on disjoint set of alternatives A and B.
Let u ∈ D1 and v ∈ D2 be arbitrary linear orders. Then

(i) (D1 ⊗ D2)(u,v) is connected,whenever D1 and D2 are;
(ii) (D1 ⊗ D2)(u,v) is copious, whenever D1 and D2 are.

Proof. (i) Domain u ⊕ v is obviously connected and connected by a single swap of neighboring

alternatives to uv which belongs to D1 ⊙ D2. The latter is also connected since D1 and D2 are.

(ii) follows from (3) and (4) since in this case, as was noted before, these inequalities become

equalities. □

Proposition 6.

(F2(a,b) ⊗ F2(c,d))(ab, cd) � F4(b,a,d, c). (6)

Proof. We list orders of this domain as columns of the following matrix

[F2(a,b) ⊙ F2(c,d) | ab ⊕ cd] =


a a b b a a c c c
b b a a c c a a d
c d c d b d b d a
d c d c d b d b b

 .
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We see that the following never conditions are satisfied:aN {a,b,c }3,aN {a,b,d }3,dN {a,c,d }1,dN {b,c,d }1.

Hence the mapping 1 → b, 2 → a, 3 → d and 4 → c is an isomorphism of F4 onto the tensor

product. □

The isomorphism (6) is very nice but unfortunately for largerm,nwe have Fm⊗Fn ≇ Fm+n . More-

over, it appears that for two maximal Condorcet domains D1 and D2 on sets A and B, respectively,
D1 ⊗ D2 may be not maximal on A ∪ B. Here is an example.

Example 2. Let us calculate E := F3(1, 2, 3) ⊗ F2(4, 5)(321, 54):
1 2 2 3 1 2 2 3 3 3 5 3 3 3 5 5 5

2 1 3 2 2 1 3 2 2 5 3 2 5 5 3 3 4

3 3 1 1 3 3 1 1 5 2 2 5 2 4 2 4 3

4 4 4 4 5 5 5 5 1 1 1 4 4 2 4 2 2

5 5 5 5 4 4 4 4 4 4 4 1 1 1 1 1 1


.

There are 17 linear orders in this domain. It is known, however, that F5 has 20 [Fishburn, 1996] but
this fact alone does not mean non-maximality of E. By Proposition 5 this domain is copious. By its
construction it satisfies just three inversion triples:

[1, 2, 4], [1, 3, 4], [2, 3, 4].

Now we see that there are two more linear orders 23514 and 23541 that satisfy these conditions.

3.2 On Fishburn’s hypothesis
We will further write (Fk ⊗ Fm)(u,v) simply as Fk ⊗ Fm , when u ∈ Fk and v ∈ Fm are chosen so

that (Fk ⊗ Fm)(u,v) has maximal width. We note that equation (6) is just a one of a kind since

F2 ⊗ F3 ≇ F5 already.

Our calculations, using formulas (2) and (5) show that

|Fn ⊗ Fn | < |F2n |

for 2 < n ≤ 19 but 4611858343415 = |F20 ⊗ F20 | > |F40 | = 4549082342996. Earlier, [Danilov et al.,

2012] showed that |F21 ⊗ F21 | > F42 disproving an old Fishburn’s hypothesis that Fn is the largest

peak-pit Condorcet domain on n alternatives [Fishburn, 1996, Galambos and Reiner, 2008].

4 CONCLUSION AND FURTHER RESEARCH
Operations over Condorcet domains are useful in many respects. The Danilov-Karzanov-Koshevoy

construction is especially useful since it converts smaller peak-pit Condorcet domains into larger

peak-pit domains. Fishburn’s replacement scheme [Fishburn, 1996] also produces larger domains

but without preserving peak-pittedness.

Now that we know that д(n) > |Fn |, the question whether or not f (n) = д(n) comes to the fore.

Fishburn’s replacement scheme maybe instrumental in obtaining the answer (if it is negative).
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